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A clutter C is a collection E(C) of subsets of a finite set V(C) with the
property that A, € A; for all A,,A; € E(C). Let M(C) be the 0,1 matrix
with columns indexed by V/(C) whose rows are the 'ncidence vectors of the
members of E(C).

Consider the two linear programs

min{wz : ¢ >0, M(C)z > 1} (1)
maz{yl: y 20, yM(C) < w}. (2)

The clutter C has the Maz Flow Min Cut property if (1) and (2) have
integral optimum solutions = and y for all nonncgative integral vectors w. C
is ideal if (1) has an integral optimum solution z for all nonnegative (integral)
vectors w. C packs if (1) and (2) have integral optimum solutions z and y
when w = 1.

For a clutter C, the deletion C\j and contraction C/j of an element
J € V(C) are clutters defined as follows: V(C\j) = V(C/j) = V(C) - {;},
E(C\j) = {A € E(C) : j ¢ A} and E(C/j) are the minimal members of
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{A—-{j}: A€ E(C)}. Any clutter obtained from C by repeated application
of the contraction and deletion operations is called a minor of C.
We propose the following conjecture.

Conjecture 1 A clutter C has the Max Flow Min Cut property if and only
if C and all its minors pack.

Remark 1 The “only if” part of the above statement is obvious since saying
that a minor of C packs is equivalent to stating that (1) and (2) have integral
solution vectors z and y for the objective function w; = 0 for a deleted
“élement j, w; = oo for a contracted element j and w; = 1 for the remaining
elements.

Remark 2 A weakening of the “if” condition follows from Lehman’s char-
acterization of ideal clutters [2] which implies the following:

If C is not ideal, it contains a minor C’ such that the linear program (1)
associated with C’' has a unique optimum solution z whose components are
all fractional when w = 1. It follows that if C and all its minors pack, then
C is ideal.

Remark 3 A special case where the conjecture holds is when C is a bi-
nary clutter. Seymour [4] proved that a binary clutter has the Max Flow
Min Cut property if and only if it does have a Q¢ minor, where V(Q¢) =
{1,2,3,4,5,6} and E(Qs) = {{1,3,5},{1,4,6},{2,3,6} .2,4,5}}. Itis easy
to check that the linear program (2) associated with Q¢ has a unique opti-
mum solution vector y = % when w = 1.

Remark 4 This conjecture is the exact analog of the replication lemma used
in the proof of the Fulkerson-Lovasz [1] [3] pluperfect graph theorem. Let

maz{wz: z >0, M(C)z <1} (3)
min{yl: y >0, yM(C) > w}. (4)

The replication lemma shows that (3) and (4) have integral optimum solution
vectors ¢ and y for every 0,1 vector w if and only if they have integral
optimum solution vectors for every (nonnegative) integral vector w.

The pluperfect graph theorem states that if (4) has an integral optimum
solution y for every 0,1 vector w, then (3) and (4) have integral optimum
solutions z and y for every (nonnegative) integral vector w.
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Remark 5 To prove the “if” part of Conjecture 1, it is sufficient to show
the following.

Conjecture 2 (Replication Conjecture) If C and all its minors pack,
then the clutter C; defined below. packs. For j € V(C), let

V(G) =V(C)u{i’}
EC;))=EC)u (U A\ {7}u{i'D.

Adj

Indeed, observe that the linear programs (1) and (2) have integral optimum
solutions for the vector w such that w; = 2 and w; = 1 for ¢ # j if and only if
the clutter C; packs. Therefore, using the replication conjecture recursively,
it follows that C has the Max Flow Min Cut property.
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